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tent higher, these algorithms may amplify some messages while
reducing the visibility of others. There’s been intense public and
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benefit more from algorithmic amplification than others. We
provide quantitative evidence from a long-running, massive-scale
randomized experiment on the Twitter platform that committed
a randomized contrel group including ncarly 2 million dzily active
accounts to a reverse-chronological content feed free of algorith-
mic personalization. We present two sets of findings. First, we
studied tweets by clected legislators from major political parties in
seven countries. Our results reveal a remarkably consistent trend:
In six out of seven countries studied, the mainstream political
right enjoys higher algorithmic amplification than the mainstream
political left. Consistent with this overall trend, our second set
of findings studying the US media landscape revealed that al-
gorithmic amplification favors right-leaning news sources. We
further looked at whether algorithms amplify far-left and far-right
political groups more than moderate ones; contrary to prevailing
public belief, we did not find evidence to support this hypothesis.
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When Twitter introduced machine lzarring to personalize the
Home timeline in 2016, it excluded a randomly chosen control
group of 1% of all global Twitter users from the new person
alized Home timeline. Individuals in this control group have
never experienced personalized ranked timelines. Insteac, their
Home timeline continues to display tweets and retweets from
accounts they follow in reverse chronological orcer. The treat-
ment group corresponds to a sample of 4% of all other accounts
who experience the personalized Home timeline. However, even
individuals in the treatment group do have the option to opt-out
of personalization (S/ Appendix, section 1.A).

The experimental setup has some inherent limitations. A first
limitation stems from interaction effects between individuals in
the analysis (22). In social networks, the control group can never
be isolated from indircct cffects of personalization, as individuals
in the control group encounter content shared by users in the
treatment group. Therefore, although a randomized controlled
cxperiment, our cxperiment docs not satisfy the well-known
Stable Unit Treatment Value Assumption from causal inference
(23). As a consequence, it cannot provide unbizsed estimates
of causal quantitics of intcrest, such as the average trecatment
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* The Friedkin-Johnsen (FJ) model is a popular opinion formation model
« G = (V, E) with edge weights w,,, and Laplacian L

 Each node u € V, has a (public) expressed opinion z, € [—1,1]
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The FJ Opinion Formation Model

Friedkin, Johnsen (Journal of Mathematical Sociology, 1990)

* The Friedkin-Johnsen (FJ) model is a popular opinion formation model
« G = (V, E) with edge weights w,,, and Laplacian L

 Each node u € V, has a (public) expressed opinion z, € [—1,1]
and a (private) innate opinion s, € [—1,1]

» Abstraction: Opinions are numbers in [—1,1]

« Update rule for expressed opinions at time :

(t=1)
Su T ZveN(u) Wiy

I+ szN(u) Wi

* |ntuition: How people adapt their opinions due to peer-pressure

20 —

u

. Equilibrium expressed opinions: z* = limzY = I+ L)~ 's

[—00

« Note that when G changes, then L. changes, then z* changes
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Polarization and Disagreement

* In general, the FJ model does not converge to a consensus opinion

= Allows to study the network’s polarization and the disagreement

1 . -
, Polarization = Z (z* — 7)*, where 7 = — Z z¥ — “variance of the opinions”
n

ueV ueV

Disagreement = Z W, (25 — 7¥)? — stress among neighbors
(u,v)eE

= |n linear algebra terms,
disagreement + polarization given by s (I + L)~ 's

* Now we can ask interesting questions:

* How does it effect the polarization/disagreement if...

* the graph changes (e.g., due to timeline algorithms), or
if a few node opinions change?
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Formal Study of Interventions

 How to study interventions formally?
 Optimization problem:

e Objective function encodes the desired goal

» Constraints encode the power of the intervention

« Example:

Minimize the disagreement while making few changes to the original graph structure L

s ' k _ %)2
min disagreement ?Et; Z WulZi = 2
G’ — (u,v)er

s.t. G'iscloseto G st. [L =Lyl <C



Modeling the Impact of Timeline Algorithms
on Opinion Dynamics
Tianyi Zhou, Stefan Neumann, Kiran Garimella, Aris Gionis — WebConf’24



Motivation

* |mportant question how we can reduce polarization in
(online) social networks
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Stefano Balietti, Lise Getoor, Daniel G. Goldstein, and Duncan J. Watts
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Motivation

* |mportant question how we can reduce polarization in
(online) social networks

>

* Recent empirical study by Balietti et al.: F |l aenese Bo—~aR BROLEO B—OR
8 | v % %xxXX T AN ATAR 5
* Users with similar (non-political) interests are more £ | s B0—R BROEPW B—O0R
likely to align their opinions (even if they disagree) i:’
© _ low/low ___High/Low
* Our questions: E | BmedisMo—AR | «Emin B—COR
nE) é/xxxx T v VR
 How can timeline algorithms of online social L | & FREA—OR ) <EmMHs Ho—R
networks exploit such behaviors? L R

Incidental Similarity

 Can we model this using opinion formation
models?

Reducing opinion polarization: Effects of exposure to similar people with differing political views
Stefano Balietti, Lise Getoor, Daniel G. Goldstein, and Duncan J. Watts
PNAS 2021 Vol. 118 No. 52 e2112552118

 Can we optimize the timelines to reduce
disagreement and polarization?
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 Goal:
Incorporate user interests and the effect of timeline algorithms into
opinion formation models
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K Han @Ha Lee '
definitions of gaad evaluation tasks from the

greal Ellen Voorhees 1SIGIR2024.

* Goal: b IS
Incorporate user interests and the effect of timeline algorithms into ~ 4 these r (¢ rag) crterion applies to the

generative nlp (g of rag) side of rag sysiems.

opinion formation models < - e 4 s
 Challenge: A  '; " ” ‘, if .
* Opinion formation models are defined on graphs
* Timeline algorithms provide content to users
= Content is picked based on users’ interests in different topics
= How to combine these two abstraction levels?
* Our approach: Consider a combined graph consisting of

* Fixed graph, based on real-world friendships or “follow”-graph

« Recommender graph, based on
aggregate information from timeline algorithm 5

10
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Aggregate Information About User Interests

« Suppose there are k topics (and k is small)

« User—topic matrix X:

* Models users’ timeline decomposition

- X,; = fraction of content for user i from topic j

= The content recommended to user € is 80%
about basketball, 10% about food and 10% about
news

0.7 0.2 0.1 0.0
0.2 0.1 0.1 0.6
0.0 0.8 0.1 0.1

User—topic
matrix X

11




« Suppose there are k topics (and k is small)

« User—topic matrix X:

2

Aggregate Information About User Interests

* Models users’ timeline decomposition

. X.. = fraction of content for user i from topic j

= The content recommended to user € is 80%
about basketball, 10% about food and 10% about

NEeEWS

« Topic-influence matrix Y:

* Models how influential users are for different topics

 For topicJ, a Yij—fraction of recommended content
is from user I

= For the topic basketball, 10% of the recommended
content is by &, 20% is by & and 70% is by €

0.7 0.2 0.1 0.0
0.2 0.1 0.1 0.6
0.0 0.8 0.1 0.1
User—topic
matrix X

11

0.7 0.2 0.1
0.1 0.2 0.7
0.3 0.1 0.6
0.0 0.9 0.1

Topic—influence

matrix Y




Modeling Timeline Algorithms Based on User Interests

0.7/0.2/0.1/0.0 0.7 | 02 | 01
« Observe that the matrix product XY models the edges - 0 0o 07
introduced by the timeline algorithm 102101101 06 - - -
- ' 0.3 | 0.1 | 0.6
% 0.0(0.8|0.1|0.1

0.0 | 0.9 | O.1

User—topic matrix X Topic—influence matrix Y
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Modeling Timeline Algorithms Based on User Interests

0.7 0.2 0.1
| ¥/0.7/0.2/0.1/0.0
« Observe that the matrix product XY models the edges ! 0.1 0.2 0.7
introduced by the timeline algorithm - ' ' '
3/0.2/0.1/0.1/0.6
= |n the timeline of user &, | 0.3 0.1 0.6
54% of the content is from ™~ 0.0/0.8/0.1/0.1
19% is from & and 27% is from € T 0.0 0.9 0.1
= This matrix has rank k (“low rank”) User—topic matrix X Topic—influence matrix Y
important for efficient simulation
\o‘ﬁ; &E) f#

st/ 0.54 0.19 0.27

0.18 0.61 0.21

0,
€ | 011 | 026 | 0.63
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Modeling Timeline Algorithms Based on User Interests

« Observe that the matrix product XY models the edges

introduced by the timeline algorithm

= |n the timeline of user T,

54% of the content is from &,
19% is from 2 and 27% is from €

= This matrix has rank k (“low rank”),

 We consider combined graph with adjacency matrix

important for efficient simulation

A+ a (XY + YTXT)
A is adjacency matrix of the fixed graph

a Is a scaling term measuring how important
recommendations are

Corresponds to adding up fixed graph and
recommender graph

Added symmetrization for analysis

 0.0/0.8/0.1/0.1

Fixed graph

12

=
|| ==

0.7/ | 0.2 | 0.1
0.1 0.2 | 0.7
0.3 | 0.1 | 0.6
0.0 | 0.9 | 0.1

Topic—-influence matrix Y

0.19

0.61

0.26

0.27

0.21

0.63

Recommender graph




Minimizing Polarization + Disagreement

* Goal: Update users’ timelines to minimize polarization and disagreement

13
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Minimizing Polarization + Disagreement

* Goal: Update users’ timelines to minimize polarization and disagreement

min sT(I+L,)" s
X

st. | X, —X;| <6 Vi,j
« Where L, is the Laplacian of the graph A + (XY + YTXT)

* We can make small modifications
to the timeline decomposition for each user (given by X)

\A—A O - T | 054 019 027 |

_ QOO/Q + XY = = | 0.18 | 0.61 | 0.21 |

!E/ \ 5 é‘; 0.11 | 026 | 083 |
®

Fixed graph Recommender graph
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Minimizing Polarization + Disagreement

* Goal: Update users’ timelines to minimize polarization and disagreement

min sT(I+L,)" s
X

st. | X, —X;| <6 Vi,j
« Where L, is the Laplacian of the graph A + (XY + YTXT)

* We can make small modifications
to the timeline decomposition for each user (given by X)

. 07/02/0110.0 1 06|02|01]|0.1
0.6

& 1 0.2|0.1]0.1 &
¢» 0.0/ 0.8|0.1]0.1 @ 0.0 (0.9 0.0 0.1

Initial user—topic matrix X New user-topic matrix X
\Q > g)’— T 054 | 019 | 027
= & + XY= & o018 o061 021
¢ / \ o € 011 | 026 | 0.63
Fixed graph Recommender graph
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Minimizing Polarization + Disagreement

* Goal: Update users’ timelines to minimize polarization and disagreement

min sT(I+L,)" s “.' 0.7 0.2|0.1]0.0 g 0.6 | 0.2 0.1 0.1
st |X;—X;1 <0 Vi,j £ /0.2/01]0.1 |06 £4/02/0.1]/02]|0.5
« Where L, is the Laplacian of the graph A + (XY + YTXT) & 00108101101 & 00/ 09!00!0.1
] i
* We can make small modifications e : : : N
Initial user-topic matrix X New user—topic matrix X
to the timeline decomposition for each user (given by X) P P
« Parameter 6 controls amount of allowed changes
« Efficient optimization algorithm: ? e T [ >
« Can compute (1 + &)-approximate solution in time O(m\/%) \@ oQ@ QL_ T 054 019 | 027
— in practice even faster & — = 4+ XY= & o018 | ost o021
« Gradient has closed form and can be computed efficiently !}’:/ \ = & o011 | 02 063
* We examine solutions and build a combinatorial greedy algorithm i) , . . ‘
that “mimics” the results of the continuous optimization algorithm _
Fixed graph Recommender graph
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Experimental Evaluation



Datasets

e \We collected two real-world datasets from Twitter

* Larger dataset has 27k nodes and 268k edges

* \We obtain their retweets and based on them §£ = 5 &
estimate interests X and influence Y \@ & o o g (oo o oz |
» Edges correspond to who follows whom - & — = + XY= & o oe | oz
(ﬂxed graph) !/ \Qf Q 011 | 026 | 083 |
* We estimate their opinions by looking at who |
they follow Fixed graph Recommender graph

e Data Is available online

* Evaluation on 25 other graphs with real-world
topology and synthetic opinions and X and Y
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Strengthens Controversial Topics

* We run our algorithm which converges to optimal
solution and inspect solution
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* We run our algorithm which converges to optimal
solution and inspect solution
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Strengthens Controversial Topics

* We run our algorithm which converges to optimal
solution and inspect solution

e y-axis: How much more/less important did each topic

become during optimization?
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* We run our algorithm which converges to optimal
solution and inspect solution

e y-axis: How much more/less important did each topic

become during optimization?
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* We run our algorithm which converges to optimal
solution and inspect solution

e y-axis: How much more/less important did each topic

become during optimization?
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solution and inspect solution
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Strengthens Controversial Topics

* We run our algorithm which converges to optimal
solution and inspect solution

e y-axis: How much more/less important did each topic
become during optimization?

e Xx-axis: Average leaning of influencers for each topic
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Strengthens Controversial Topics

* We run our algorithm which converges to optimal
solution and inspect solution

e y-axis: How much more/less important did each topic
become during optimization?

e Xx-axis: Average leaning of influencers for each topic

= Results show that “controversial topics™ get
strengthened

16

User—topic matrix X

#/0.7/02/0.1/0.0 L i
% 01 | 02 | 07
210210110106

& 03 | 01 | 06
¢ 0.0/0.80.1|0. 0.0 | 0.9 | 0.1

Topic—-influence matrix Y

&
;
0 G
0 2
Q
3 ) . /
o SH00
c \ . /
-
O )\ o o/ 7 politics
"~ ) societal issues
= SR S 4 .| @ spors
= 0% media
¢ _ ‘-} games/movics
® e6¢ e o music
C ® tech
e % W others
- 5 OO . Og — — - Quadratic Fit

~0.10 —0.05 0.00 0.05 0.10 0.15
Weighted average opinion T in topics



Strengthens Controversial Topics

* We run our algorithm which converges to optimal
solution and inspect solution

e y-axis: How much more/less important did each topic
become during optimization?

e Xx-axis: Average leaning of influencers for each topic

= Results show that “controversial topics™ get
strengthened

* Intuition: To move node closer to average opinion,
show them opposing views

* Influenced by FJ-opinion dynamics

* Pushes political topics (even though the algorithm
does not know this)
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e Question:
 What if we want to avoid behavior from the previous slide?

= Strengthen topics with opinions close to 0 instead
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Strengthening Non-Controversial Topics
Is Much Less Effective

e Question:
 What if we want to avoid behavior from the previous slide?
= Strengthen topics with opinions close to 0 instead
e y-axis: How much polarization and disagreement were decreased
e Xx-axis: Budget for changing timelines
« GDPM: Our gradient-descent based algorithm, optimal solution
e Baseline 2 (BL 2):

 For each user, increase topics with “opposing” viewpoints;
mimics GDPM

« Baseline 1 (BL 1):

e For each user, decrease controversial topics,
increase non-controversial topics (Tj close to 0)
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Conclusion



Modeling the Impact of Timeline Algorithms on Opinion Dynamics
Tianyi Zhou, Stefan Neumann, Kiran Garimella, Aris Gionis — WebConf’24

@chow_tianyi @StefanResearch @gvrkiran

* Opinion formation models offer a principled approach
to analyze the impact of interventions on networks

* By making small changes to timeline decompositions
based on user interests,
we effectively reduce polarization + disagreement
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Strengthens Controversial Topics

* We run our algorithm which converges to optimal solution and
Inspect solution

= Algorithm is not allowed to change importance of
political topics

e y-axis: How much more/less important did each topic become
during optimization?

e Xx-axis: Average leaning of influencers for each topic
= Results show that “controversial topics” get strengthened

* Intuition: To move node closer to average opinion, show
them opposing views

* Influenced by FJ-opinion dynamics

* Pushes political topics (even though the algorithm does not
know this)

21

» 0.0

0.8

0.1

0.1

1000+
Te)
7))
0,
S
s 5S00
c
O
—
o
O 0
—500+

—0.10 005 OOO 005 010 015

...... S N L.oe
""’iﬁ@

User—topic matrix X

OO

@)

‘é@ oo 000

O

0.7 0.2 0.1
0.1 0.2 0.7
0.3 0.1 0.6
0.0 0.9 0.1

Topic—-influence matrix Y

politics

societal issues

sports
media

games/movies

music
tech
others

— — - Quadratic Fit

Weighted average opinion T in topics




Other Examples of Interventions



The Impact of Viral Content

* Tu, Neumann (WebConf’22):

* Model for simulating how viral content in OSNs
impacts node opinions
(combines the independent cascade model and the
FJ model)
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The Impact of Viral Content

Relative Increase of Polarization

NipsEgo_B.,29 —

PagesGov — 7.48 — Non-controversial Content
1051 — Controversial Content
| 39.55
Anybeat 124
=7
Gplus | 57.93

—4.98

Suppose the 0.5% highest-degree
nodes start sharing a content
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Adversaries Who Aim to Radicalize

e (Gaitonde, Kleinberg, Tardos (EC’20) and Chen, Racz (TNSE’21):

 What is the impact on the disagreement,
when adversaries can change k innate opinions?

 Motivated by real-world events
(e.g., Russia meddling with the US election in 2016)

= They give bounds showing disagreement increases by < 8d,_ ..k
* Tu, Neumann, Gionis (KDD’23):

 Adversary is almost as powerful when only knowing the graph
but not the opinions

= Can obtain a O(1)-approximation of maximum possible disagreement
(under some assumptions)

= Connection to solving MaxCut with cardinality constraint
iIn graphs with positive and negative edge weights
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Further Examples of Interventions

 Musco, Musco, Tsourakakis (WebConf’18):
 Changing innate opinions to minimize the disagreement and polarization
 Making (relatively large) changes to network topology

e Chitra, Musco (WSDM’20):

* |f an OSN provider repeatedly changes the network structure to reduce disagreement,
this will increase the polarization

* Bhalla, Lechowicz, Musco (WSDM’23):

 Updating graph based on confirmation bias and friend-of-friend recommendations
increases polarization over time
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