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“In six out of seven countries studied, the mainstream political 

right enjoys higher algorithmic amplification than the mainstream 

political left.”
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Opinions given by  
z* = (I + L)−1s

Model changes to  or  
— optimization problems

s L Solutions of optimization problems

reveal real-world insights
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• Intuition: How people adapt their opinions due to peer-pressure

• Equilibrium expressed opinions: z* = lim
t→∞

z(t) = (I + L)−1s
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➡ In linear algebra terms, 
 disagreement + polarization given by s⊤(I + L)−1s

• Now we can ask interesting questions:
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• the graph changes (e.g., due to timeline algorithms), or 
if a few node opinions change?
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Formal Study of Interventions

• How to study interventions formally?

• Optimization problem:

• Objective function encodes the desired goal

• Constraints encode the power of the intervention

• Example:

Minimize the disagreement while making few changes to the original graph structure : 
 

	 	

L0

min
G′￼

 disagreement

s.t. G′￼ is close to G
⟺

min
L∈ℒ ∑

(u,v)∈E

wu,v(z*u − z*v )2

s.t. ∥L − L0∥F ≤ C

7



Modeling the Impact of Timeline Algorithms  
on Opinion Dynamics
Tianyi Zhou, Stefan Neumann, Kiran Garimella, Aris Gionis — WebConf’24
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• Recent empirical study by Balietti et al.:


• Users with similar (non-political) interests are more 
likely to align their opinions (even if they disagree)

• Our questions: 

• How can timeline algorithms of online social 
networks exploit such behaviors?


• Can we model this using opinion formation 
models?


• Can we optimize the timelines to reduce 
disagreement and polarization?
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The Underlying Challenge

• Goal: 
Incorporate user interests and the effect of timeline algorithms into 
opinion formation models

• Challenge:

• Opinion formation models are defined on graphs

• Timeline algorithms provide content to users

➡Content is picked based on users’ interests in different topics

➡How to combine these two abstraction levels?

• Our approach: Consider a combined graph consisting of

• Fixed graph, based on real-world friendships or “follow”-graph

• Recommender graph, based on 
aggregate information from timeline algorithm

10

👩🌾

0.7

🤵

👮
👩🎤

👩🏭

0.2

0.3

0.9

0.8

0.5



Aggregate Information About User Interests

11



Aggregate Information About User Interests

• Suppose there are  topics (and  is small)k k

11



Aggregate Information About User Interests

• Suppose there are  topics (and  is small)k k

• User–topic matrix :X

• Models users’ timeline decomposition

•  = fraction of content for user  from topic Xij i j

➡The content recommended to user 👩🌾 is 80% 
about basketball, 10% about food and 10% about 
news

11

0.7 0.2 0.1 0.0

0.2 0.1 0.1 0.6

0.0 0.8 0.1 0.1

👩🎨

🧑🔧

👩🌾

🏀🖼 🌮 📰

User–topic 
matrix X



Aggregate Information About User Interests

• Suppose there are  topics (and  is small)k k

• User–topic matrix :X

• Models users’ timeline decomposition

•  = fraction of content for user  from topic Xij i j

➡The content recommended to user 👩🌾 is 80% 
about basketball, 10% about food and 10% about 
news

• Topic–influence matrix :Y

• Models how influential users are for different topics

• For topic , a -fraction of recommended content 
is from user 

j Yij
i

➡For the topic basketball, 10% of the recommended 
content is by 👩🎨, 20% is by 🧑🔧 and 70% is by 👩🌾
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Modeling Timeline Algorithms Based on User Interests

• Observe that the matrix product  models the edges 
introduced by the timeline algorithm

XY

➡In the timeline of user 👩🎨, 
54% of the content is from 👩🎨, 
19% is from 🧑🔧 and 27% is from 👩🌾

➡This matrix has rank  (“low rank”), 
important for efficient simulation

k

• We consider combined graph with adjacency matrix 
 

	 A + α (XY + Y⊺X⊺)
•  is adjacency matrix of the fixed graphA

•  is a scaling term measuring how important 
recommendations are
α

• Corresponds to adding up fixed graph and 
recommender graph

• Added symmetrization for analysis
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Minimizing Polarization + Disagreement

• Goal: Update users’ timelines to minimize polarization and disagreement

min
X̃

s⊺(I + LA)−1s

s.t. | X̃ij − Xij | ≤ θ ∀i, j

• Where  is the Laplacian of the graph LA′￼ A + α (XY + Y⊺X⊺)
• We can make small modifications 

to the timeline decomposition for each user (given by )X

• Parameter  controls amount of allowed changesθ

• Efficient optimization algorithm:

• Can compute -approximate solution in time  
— in practice even faster

(1 + ε) O(m n)

• Gradient has closed form and can be computed efficiently

• We examine solutions and build a combinatorial greedy algorithm 
that “mimics” the results of the continuous optimization algorithm
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Datasets

• We collected two real-world datasets from Twitter


• Larger dataset has 27k nodes and 268k edges


• We obtain their retweets and based on them 
estimate interests  and influence 


• Edges correspond to who follows whom 
(fixed graph)


• We estimate their opinions by looking at who 
they follow


• Data is available online


• Evaluation on 25 other graphs with real-world 
topology and synthetic opinions and  and 

X Y

X Y
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• y-axis: How much more/less important did each topic 
become during optimization?

• x-axis: Average leaning of influencers for each topic

➡Results show that “controversial topics” get 
strengthened

• Intuition: To move node closer to average opinion, 
show them opposing views

• Influenced by FJ-opinion dynamics

• Pushes political topics (even though the algorithm 
does not know this)
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• For each user, increase topics with “opposing” viewpoints; 
mimics GDPM

• Baseline 1 (BL 1):

• For each user, decrease controversial topics, 
increase non-controversial topics (  close to 0)τj
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Strengthening Non-Controversial Topics 
is Much Less Effective

• Question:

• What if we want to avoid behavior from the previous slide?

➡Strengthen topics with opinions close to 0 instead

• y-axis: How much polarization and disagreement were decreased

• x-axis: Budget for changing timelines

• GDPM: Our gradient-descent based algorithm, optimal solution

• Baseline 2 (BL 2):

• For each user, increase topics with “opposing” viewpoints; 
mimics GDPM

• Baseline 1 (BL 1):

• For each user, decrease controversial topics, 
increase non-controversial topics (  close to 0)τj
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Modeling the Impact of Timeline Algorithms on Opinion Dynamics
Tianyi Zhou, Stefan Neumann, Kiran Garimella, Aris Gionis — WebConf’24

• Opinion formation models offer a principled approach 
to analyze the impact of interventions on networks


• By making small changes to timeline decompositions 
based on user interests, 
we effectively reduce polarization + disagreement


• New dataset with opinions and aggregate user 
interests


• Future work: 

• Find more expressive ways to combine opinion 
formation models and data from timeline algorithms


• Exploit more advanced optimization techniques to 
allow for more complex interventions

19
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• Opinion formation models offer a principled approach 
to analyze the impact of interventions on networks


• By making small changes to timeline decompositions 
based on user interests, 
we effectively reduce polarization + disagreement


• New dataset with opinions and aggregate user 
interests


• Future work: 

• Find more expressive ways to combine opinion 
formation models and data from timeline algorithms


• Exploit more advanced optimization techniques to 
allow for more complex interventions
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Strengthens Controversial Topics

• We run our algorithm which converges to optimal solution and 
inspect solution


➡Algorithm is not allowed to change importance of 
political topics 

• y-axis: How much more/less important did each topic become 
during optimization?


• x-axis: Average leaning of influencers for each topic


➡Results show that “controversial topics” get strengthened


• Intuition: To move node closer to average opinion, show 
them opposing views


• Influenced by FJ-opinion dynamics


• Pushes political topics (even though the algorithm does not 
know this)
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Other Examples of Interventions 
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The Impact of Viral Content

• Tu, Neumann (WebConf’22):

• Model for simulating how viral content in OSNs 
impacts node opinions 
(combines the independent cascade model and the 
FJ model)
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Suppose the 0.5% highest-degree 
nodes start sharing a content
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Further Examples of Interventions

• Musco, Musco, Tsourakakis (WebConf’18):

• Changing innate opinions to minimize the disagreement and polarization

• Making (relatively large) changes to network topology

• Chitra, Musco (WSDM’20):

• If an OSN provider repeatedly changes the network structure to reduce disagreement, 
this will increase the polarization

• Bhalla, Lechowicz, Musco (WSDM’23):

• Updating graph based on confirmation bias and friend-of-friend recommendations 
increases polarization over time
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